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Abstract

Weight decay method as one of classical complexity regularizations is simple
and appears to work well in some applications for backpropagation neural
networks (BPNN). This paper shows results for the weak and strong conver-
gence for cyclic and almost cyclic learning BPNN with penalty term (CBP-P
and ACBP-P). The convergence is guaranteed under certain relaxed condi-
tions for activation functions, learning rate and under the assumption for
the stationary set of error function. Furthermore, the boundedness of the
weights in the training procedure is obtained in a simple and clear way. Nu-
merical simulations are implemented to support our theoretical results and
demonstrate that ACBP-P has better performance than CBP-P on both con-
vergence speed and generalization ability.
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1. Introduction

Multilayer perceptron network trained with a highly popular algorithm
known as the error backpropagation (BP) has been successfully applied to
solve some difficult and diverse problems [1, 2]. This algorithm, based on the
error-correction learning rule can be viewed as a generalization of the least-
mean-square (LMS) algorithm. There are two main modes to implement
it: batch learning, in which optimization is carried out with respect to all
training samples simultaneously, and incremental learning, where it follows
the presentation of each training sample [3].

There are three different incremental BP learning strategies: on-line
learning, cyclic learning, and almost cyclic learning [4]. Incremental learning
strategies require less storage capacity than batch mode learning. Due to the
random presentation order of the training samples, incremental learning im-
plementing the instant gradient of the error function is a stochastic process,
whereas batch mode learning corresponds to the standard gradient descent
method and is deterministic [4, 5, 6].

It is well known that the general drawbacks of gradient-based BPNN
training methods are their more likely divergence and weak generalization.
In real-world problems, the BP method is usually prone to require the use
of highly structured networks of a rather large size [2]. Thus, it is requisite
to reach an appropriate tradeoff between reliability of the training and the
goodness of the model. Knowing that the network design is statistical in
nature, the tradeoff can be achieved by minimizing the overall risk with
regularization theory [7]. A general setting is to add an extra regularization
term which is called penalty term for BPNN [2].

There are three classical different penalty terms for BPNN: weight decay
[8], weight elimination [9] and approximate smoother [10]. In the weight de-
cay procedure, the penalty term is stated as the squared norm of the weights
in the BPNN [8, 11]. All the weights in the networks are treated equal-
ly. Some of the weights are forced to take values close to zero, while other
weights maintain reasonably large values, and consequently improve the gen-
eralization of BPNN [2]. In the weight elimination procedure, the complexity
penalty represents the complexity of the network as function of the weight
magnitudes relative to a pre-assigned parameter [12]. The approximate s-
moother approach is proposed in [10] for BPNN with a hidden layer and a
single output neuron. This method appears to be more accurate than weight
decay or weight elimination for the complexity regularization of BPNN. How-
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ever, it is much more computationally complex than its counterparts [2].
Below we discuss the convergence of BPNN with penalty term from a

mathematical point of view. Insofar as the satisfying performance in weight
decay method, there are quantitative studies of the convergence property
with different BP learning strategies [13, 14, 15, 16, 17, 18, 19].

For batch mode learning, the weak convergence and monotonicity are
proved as a special case for the typical gradient descent method of opti-
mization theory. A highlight in [13] is that the boundedness of the weights
between input and hidden layers are guaranteed. As an extension, the bound-
edness of the total weights in the BP feedforward neural networks based on
batch learning has been proved in [14]. For online learning, [15] focuses on
the linear output of BPNN, while an extension that the activation function
satisfies twice continuously differentiable is proposed in [16]. The main con-
tribution of these two papers is to theoretically prove the boundedness of the
weights and an almost sure convergence of the approach to the zero set of
the gradient of the error function.

Assuming the training samples are supplied in random order in each cycle
(almost cyclic), the monotonicity and weak convergence of the almost cyclic
learning for BPNN with penalty term (ACBP-P) are guaranteed based on
restricted conditions for activation functions and learning rates [17]. Addi-
tionally, the results in [17] are valid for BPNN without hidden layer. On the
basis of cyclic learning BPNN with penalty term (CBP-P), the convergence
results are proved in [18, 19]. A momentum term to speed up the training
procedure is considered as well in [19].

Within the framework of BPNN with cyclic and almost-cyclic learning,
the latest convergence results concentrate on the regular BPNN [21] and
on BPNN with momentum term [22] under much relaxed conditions such as
activation functions and learning rates. The training method of BPNN based
on the common gradient descent without any additional term is considered
in [21]. Furthermore, the strong convergence result was first proved which
allows the stationary points of error function to be uncountable somehow. In
[22], the weak and strong convergence results have been obtained for BPNN
with momentum term which performs much better than regular BPNN. None
of the earlier studies focused on convergence results for similar learning modes
with penalty term based on relaxed conditions. This paper attempts to fill
this gap.

The aim of this paper is to present a comprehensive study for CBP-
P and ACBP-P of weak and strong convergence with the identical relaxed
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training conditions [21, 22], indicating that the gradient of the error function
goes to zero and the weight sequence goes to a fixed point, respectively. In
comparison to the convergence results which consider the CBP-P and ACBP-
P [17, 18, 19], quite simple and general conditions are formulated below for
the learning rate and the activation functions to guarantee the convergence.
The main points and novel contributions of this paper are as follows:

1) The derivatives g′, f ′ of the activation functions g, f are Lipschitz con-
tinuous on R. This improves the corresponding conditions in [17, 18,
19], which requires the boundedness of the second derivatives g′′, f ′′.

From a mathematical point of view, we mention that different analytical
tools are employed in [13, 17, 18, 19] and this study for the convergence
analysis. The differential Taylor expansion in [13, 17, 18, 19], which requires
the boundedness of the second derivative of the activation function g, is
considered, while in this paper, we discuss the integral Taylor expansion and
hence require the Lipschitz continuity of g′, f ′ on R [20].

2) The condition on the learning rate in this paper is extended to a more
general case:

∑∞
m=0 ηm = ∞;

∑∞
m=0 η

2
m < ∞, (ηm > 0), which is

identical to those in [21] for cyclic learning without penalty.

Learning rate is an important criterion in the convergence analysis of
BPNN. The convergence results in [19] for cyclic learning with penalty and
momentum term focus on no hidden layer feedforward neural networks, and
require 1

ηk+1
= 1

ηk
+ β, (k ∈ N, β > 0), where ηk is the learning rate of the

k-th training cycle. Basically, this condition is equivalent to ηk = O
(
1
k

)
. It

is easy to see that the conditions on the learning rate are more relaxed in
this paper than those in [17, 18, 19].

3) The restrictive assumptions for the strong convergence in [13, 17, 19]
are relaxed such that the stationary points set of the error function is
only required not to contain any interior point.

To obtain the strong convergence result, which means that the weight
sequence converges to a fixed point, an extra condition is considered in [13,
17, 18, 19]: the gradient of the error function has finitely many stationary
points. Thus, this additional assumption is a special case in this paper (cf.
(A3)).
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4) The deterministic convergence results are valid for ACBP-P as well.

We mention that CBP-P is typically a deterministic iteration procedure
in that the updating fashion is deterministic for fixed order of samples. Due
to the random order of samples in each training cycle, the experiment shows
that ACBP-P behaves numerically better than CBP-P [17]. In this paper,
our convergence results are generalizations of both the results of [18], which
considers CBP-P, and of the results of [17, 19], which considers ACBP-P.

Remark: Considering the batch learning BPNN with penalty term we
note that this method corresponds to the standard gradient descent algo-
rithm. The convergence results are valid as well once the differential Taylor
expansion in [13] is replaced by the integral Taylor expansion in this paper.
In addition, a simple and clear proof for the boundedness of the weights is
presented.

5) Illustrated experiments have been done to verify the theoretical results
of this paper, such as boundedness of the weights, convergence property
of BPFNN with penalty term.

Comparing to [23], three different simulations have been performed to
demonstrate clearly the important properties of BPFNN with penalty ter-
m. Furthermore, one of the classification simulations shows that ACBP-P
performs generally much better than CBP-P.

The rest of this paper is organized as follows: Section 2 introduces the two
weights updating algorithms: CBP-P and ACBP-P. The main convergence
results are presented in Section 3. The performance of the presented two
algorithms are reported and discussed in Section 4. The detailed proofs of
the main results are stated as Appendix for interested readers.

2. Algorithm Description

Denote the numbers of neurons of the input, hidden and output layers
of BPNN are p, n and 1, respectively. Suppose that the training sample
set is {xj, Oj}J−1

j=0 ⊂ Rp × R, where xj and Oj are the input and the corre-
sponding target output of the j -th sample, respectively. Let V = (vi,j)n×p

be the weight matrix connecting the input and the hidden layer, and write
vi = (vi1, vi2, · · · , vip)T for i = 1, 2, · · · , n. The weight vector connecting the
hidden and the output layers is denoted by u = (u1, u2, · · · , un)T ∈ Rn. To
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simplify the presentation, we combine the weight matrix V with the weight

vector u, and write w =
(
uT ,vT

1 , · · · ,vT
n

)T ∈ Rn(p+1). Let g, f : R → R be
the activation functions for the hidden and output layers, respectively. For
convenience, we introduce the following function

G (z) = (g (z1) , g (z2) , · · · , g (zn))T , ∀ z ∈ Rn. (1)

For any given input x ∈ Rp, the output of the hidden neurons is G(Vx), and
the actual output is

y = f (u ·G (Vx)) . (2)

For fixed weights w, the output error is defined as

E(w) =
1

2

J−1∑
j=0

(Oj − f(u ·G(Vxj)))2 + λ∥w∥2

=
J−1∑
j=0

fj(u ·G(Vxj)) + λ∥w∥2,

(3)

where fj(t) = 1
2
(Oj − f(t))2, j = 0, 1, · · · , J − 1, t ∈ R and λ > 0 is the

penalty coefficient. The gradients of the error function with respect to u and
vi are given by respectively

Eu(w) = −
J−1∑
j=0

(
Oj − yj

)
f ′(u ·G(Vxj))G(Vxj) + 2λu

=
J−1∑
j=0

f ′
j(u ·G(Vxj))G(Vxj) + 2λu,

(4)

Evi
(w) = −

J−1∑
j=0

(
Oj − yj

)
f ′(u ·G(Vxj))uig

′(vi · xj)xj + 2λvi

=
J−1∑
j=0

f ′
j(u ·G(Vxj))uig

′(vi · xj)xj + 2λvi,

(5)

where yj = f(u ·G(Vxj)), i = 1, · · · , n and j = 0, 1, · · · , J − 1.
Write

EV(w) =
(
Ev1(w)T , Ev2(w)T , · · · , Evn(w)T

)T
, (6)

Ew(w) =
(
Eu(w)T , EV(w)T

)T
. (7)
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2.1. Cyclic Learning of BP with Penalty (CBP-P)

Given an initial weight w0 ∈ Rn(p+1), the cyclic learning of BPNN with
penalty term (CBP-P) updates the weights iteratively by

umJ+j+1 = umJ+j − ηm∇ju
mJ+j, (8)

vmJ+j+1
i = vmJ+j

i − ηm∇jv
mJ+j
i . (9)

where ηm > 0 is the learning rate for m-th cycle,

∇ku
mJ+j = f ′

j

(
umJ+j ·GmJ+j, k

)
GmJ+j, k + 2λumJ+j, (10)

∇kv
mJ+j
i = f ′

j

(
umJ+j ·GmJ+j, k

)
umJ+j
i g′

(
vmJ+j
i · xk

)
xk + 2λvmJ+j

i ,

(11){
GmJ+j, k = G(VmJ+jxk),
ymJ+j, k = f(umJ+j ·GmJ+j, k),

(12)

m ∈ N; i = 1, 2, · · · , n; j, k = 0, 1, · · · , J − 1.
For brevity, the above weights updating indicates

wmJ+j+1 = wmJ+j − ηm∇jw
mJ+j, (13)

where

wmJ+j =
( (

umJ+j
)T
,
(
vmJ+j
1

)T
, · · · ,

(
vmJ+j
n

)T )T
, (14)

∇jw
mJ+j =

( (
∇ju

mJ+j
)T
,
(
∇jv

mJ+j
1

)T
, · · · ,

(
∇jv

mJ+j
n

)T )T
. (15)

2.2. Almost Cyclic Learning of BP with Penalty (ACBP-P)

The order of the training samples for CBP-P is fixed in the whole training
procedure. For almost cyclic learning of BP with penalty term (ACBP-P),
each sample is chosen with a stochastic order and is fed exactly once in each
training cycle. Let {xm(0),xm(1), · · · ,xm(J−1)} be a stochastic permutation
of the samples set {x0,x1, · · · ,xJ−1}. The learning rate of the training pro-
cedure is fixed as ηm > 0 in the m-th cycle. The weights updating follows
as:
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wmJ+j+1 = wmJ+j − ηm∇m(j)w
mJ+j, (16)

That is,

umJ+j+1 = umJ+j − ηm∇m(j)u
mJ+j, (17)

vmJ+j+1
i = vmJ+j

i − ηm∇m(j)v
mJ+j
i . (18)

where

∇m(k)u
mJ+j = f ′

j

(
umJ+j ·GmJ+j,m(k)

)
GmJ+j,m(k) + 2λumJ+j, (19)

∇m(k)v
mJ+j
i = f ′

j

(
umJ+j ·GmJ+j,m(k)

)
umJ+j
i g′

(
vmJ+j
i · xm(k)

)
xm(k) + 2λvmJ+j

i ,

(20){
GmJ+j,m(k) = G(VmJ+jxm(k)),
ymJ+j,m(k) = f(umJ+j ·GmJ+j,m(k)),

(21)

m ∈ N; i = 1, 2, · · · , n; j,m(k) = 0, 1, · · · , J − 1.

3. Summary of Main Results

For any vector x = (x1, x2, · · · , xn)T ∈ Rn, we write its Euclidean norm
as ∥x∥ =

√∑n
i=1 x

2
i . Let Ω0 = {w : Ew(w) = 0} be the stationary point set

of the error function E(w). Let Ω0,s ⊂ R be the projection of Ω0 onto the
s-th coordinate axis, that is,

Ω0,s =
{
ws ∈ R : w = (w1, · · · , ws, · · · , wn(p+1))

T ∈ Ω0

}
(22)

for s = 1, 2, · · · , n(p + 1). To analyze the convergence of the algorithm,
following assumptions are needed:

(A1) g′(t) and f ′(t) are Lipschitz continuous on R;

(A2) ηm > 0,
∑∞

m=0 ηm = ∞,
∑∞

m=0 η
2
m <∞ ;

(A3) Ω0,s does not contain any interior point for every s = 1, 2, · · · , n(p+1).
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Theorem 3.1. Assume the Conditions (A1) and (A2) are valid. Then, s-
tarting from an arbitrary initial weight w0, the learning sequence {wm} gen-
erated by (8) and (9) or by (17) and (18) is uniformly bounded, that is, there
exists a positive constant C > 0 such that

∥wm∥ < C, (23)

and satisfies the following weak convergence

lim
m→∞

∥Ew (wm)∥ = 0; (24)

Moreover, if the assumption (A3) is also valid, there holds the strong conver-
gence: There exists an unique w∗ ∈ Ω0 such that

lim
m→∞

wm = w∗. (25)

4. Simulations

In this section, three different simulations are presented to verify the con-
vergence property of CBP-P and ACBP-P. In addition, the performance of
CBP-P and ACBP-P with and without penalty are compared for: 4-Parity
problem, regression and benchmark classifications. The network architec-
tures for each of the above problems are demonstrated below, respectively.
The logistic function tansig(·) is employed as the activation function of hidden
layer for all of the preceding networks, while the output activation function
is different and depends on the network output in terms of the following d-
ifferent applications. To illustrate the convergence results in this paper, we
have performed different trials: one trial for the first two simulations, while
twenty trials for the third classification problems. We note that the perfor-
mance of CBP-P and ACBP-P is very similar with slight differences such as
effectiveness and stochastic property. Thus, we verify the theoretical results
of this paper based on CBP-P in the first two examples and compare the
performance of CBP-P and ACBP-P in the last example.

4.1. Example 1: 4-Parity Problem.

In this example, the 4-Parity problem is considered for five inputs (in-
cluding bias), nine hidden units (including bias) and one output. All transfer
functions are tansig(·). This experiment has been conducted by selecting the
learning rate η and penalty factor λ with different values from 0.1 to 0.5,
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Figure 1: Performance behavior of CBP-P for Example 1, a) Error, b) Norm of gradient.

         

 
� = 0.1  � = 0.0003    

� = 0.1  � = 0.0 

Figure 2: Comparison between CBP-P and CBP of norm of weights for Example 1.

and 0.001 to 0.0001, respectively. The initial weights are randomly chosen
in [−1, 1]. The training procedure is stopped after 10, 000 iterations or when
the error is less than 1e− 6. We note that the performance behavior of the
above tests is consistent with the convergence results which proved in The-
orem 3.1. We select one parity of the parameters to show and compare the
performance with and without the penalty factor.

The performance results of CBP-P are shown in Fig. 1 for η = 0.1, λ =
0.0003 for 4-Parity problem. It can be seen that the error function decreases
monotonically in Fig. 1(a), and the norm of the gradient of error func-
tion approaches zero in Fig. 1(b), as depicted by the convergence results in
(24). Fig. 2 demonstrates the effectiveness of the algorithm in controlling
the magnitude of weights. The norm of weights increases during the train-
ing procedure without the penalty term, while the norm of weights initially
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increases and then remains bounded with penalty term as indicated in the
theoretical results (23).

4.2. Example 2: An approximation problem.

In this subsection, we consider the following function demonstrated in
[24] to show the function approximation capability of BPNN with penalty
term.

F (x) = 0.5x− sin(x), x ∈ [−4, 4]. (26)

Figure 3: Approximation performance of CBP-P for Example 2, a) Target function and
training samples, b) Approximation.

The training pairs are generated as follows: 100 inputs (xi, i = 1, · · · , 100)
are randomly chosen from the interval [−4, 4] with the corresponding outputs
F (xi) + ei, where ei ∈ N(0, 0.1) is noise and N(0, 0.1) stands for the normal
distribution with expectation and variance being 0 and 0.1, separately. The
desired function and the training pairs (“∗”) are shown in Fig. 3(a).

We construct one CBP-P network with 2 input neurons (including bias),
8 hidden neurons and 1 output neuron to implement this approximation
problem. The activation function purelin(·) is employed for the output layer
in terms of the special approximation problem (26). The initial weights are
chosen stochastically in [−1, 1]. The training parameters take the following
settings: η = 0.02 and λ = 0.0005, respectively. The stop criteria are set to
be: 10, 000 training cycles or the desired error below 1e− 6.

Fig. 3(b) shows that CBP-P approximates the presented nonlinear func-
tion (26) very well, which demonstrates that BPNN with penalty term can
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Figure 4: Comparison between CBP-P and CBP of norm of weights for Example 2.

be successfully used for approximation problems. It can be seen that CBP-P
in Fig. 4 can effectively control the magnitude of the weights in the training
procedure, which shows that the norm of weights for CBP-P tends to be
steady.

4.3. Example 3: Benchmark classification problems.

The CBP-P and ACBP-P methods have also been compared using 10
benchmark classification datasets from the UCI Machine Learning Repository
[25] as shown in Fig. 5. In this example, 5-fold cross-validation has been
performed, i.e. each dataset is randomly split 5 subsets with one set of the
five used as testing set while the four remaining subsets as training sets.

 

Data Set Data Size Input Features Classes 

5 fold Cross Validation 

1. Breast Caner 286 9 2 

2. Ecoli 336 7 8 

3. Iris 150 4 3 

4. Glass Identification 214 9 7 

5. Liver Disorders 345 6 2 

6. Monk’s Problems 432 6 2 

7. Diabetes 768 8 2 

8. Splice-junction 3,190 61 3 

9. Waveform Version 2 5,000 40 3 

10. Mushroom 8124 22 2 

 

Figure 5: Benchmark classification datasets for Example 3.
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To compare the computational performance, all training parameters are
identically chosen except for the order of the training, as indicated in Section
2. The original learning rate and penalty factor are set to be 0.1 and 0.0001,
separately. The termination criteria are: 30, 000 training cycles or maximum
error of 1e− 5 for the first 7 small size datasets and 400, 000 training cycles
or maximum error of 1e− 5 for the last 3 datasets.

 

Data Sets Algorithm CPU time(s) Iterations Training Accuracy Testing Accuracy 

1. Breast Caner CBP-P 5.2086 9.4458e+003 0.8834 0.8089 

 ACBP-P 4.8836 8.4998e+003 0.8698 0.8079 

2. Ecoli CBP-P 0.0851 134.1 0.6990 0.6837 

 ACBP-P 0.0726 118.6 0.7025 0.6988 

3. Iris CBP-P 10.8253 1.7771e+004 0.9790 0.9556 

 ACBP-P 11.3256 1.7822e+004 0.9800 0.9556 

4. Glass Identification CBP-P 11.9971 2.0541e+004 0.7460 0.5378 

 ACBP-P 11.5307 2.0216e+004 0.7600 0.5625 

5. Liver Disorders CBP-P 16.7298 2.6065e+004 0.6913 0.6327 

 ACBP-P 16.7099 2.6065e+004 0.6946 0.6462 

6. Monk’s Problems CBP-P 0.0846 115.6 0.6735 0.6254 

 ACBP-P 0.0636 99.6 0.6740 0.6362 

7. Diabetes CBP-P 4.8798 7.8294e+003 0.7116 0.6774 

 ACBP-P 2.0673 3.5036e+003 0.7116 0.7048 

8. Splice-junction CBP-P 43.7541 9.3581e+004 0.8746 0.8107 

 ACBP-P 29.0815 6.9210e+004 0.9031 0.8430 

9. Waveform Version 2 CBP-P 91.6936 2.1409e+005 0.7718 0.7516 

 ACBP-P 72.7902 1.7937e+005 0.7905 0.7601 

10. Mushroom CBP-P 71.9903 1.8061e+005 0.8639 0.7836 

 ACBP-P 54.0482 1.3983e+005 0.8821 0.8015 

 

Figure 6: Comparison between CBP-P and ACBP-P for Example 3.

Four performance metrics have been listed in Fig. 6. The CPU time
measures the time when perform the training procedure. It can be seen that
the training times for ACBP-P are less than CBP-P except for the “Iris”
set. The main reason is that the stochastic nature survives in ACBP-P in
which the order of training samples are randomly chosen. This shows that
ACBP-P training runs much faster than CBP-P in terms of the stochastic
property. Training and testing accuracies play a crucial role in measuring
the performance of feedforward neural networks. Training accuracy presents
the classification capability of BPNN in training procedure, while testing
accuracy shows the generalization of BPNN. It can also be seen from Fig.
6 that ACBP-P does much better than CBP-P on the selected benchmark
classification problems except for the first “Breast Cancer” set. This demon-
strates that ACBP-P has better generalization performance in terms of the
stochastic property.
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5. Conclusions

Cyclic and almost cyclic learning of BPNN with penalty term (weight
decay) are considered in this paper. The weak convergence which indicates
that the gradient of the error function goes to zero as the iteration goes to
infinity is proved under relaxed conditions of the activation functions and the
learning rate. In comparison to existing convergence results, the assumption
for the strong convergence in this study is a big-step extension as well. Il-
lustrative experiments are implemented to illustrate theoretical results, and
the comparison between CBP-P and ACBP-P shows that stochastic nature
plays an important role in improving the performance of ACBP-P.

Appendix

The convergence proof for CBP-P is presented in the following Subsection
A. Then, in Subsection B, we briefly point out how to extend the results to
ACBP-P.

The following three lemmas are very useful in convergence analysis for
CBP-P and ACBP-P methods, and the specific proofs are presented in [21].

Lemma 1: Let q(x) be a function defined on a bounded closed interval
[a, b] such that q′(x) is Lipschitz continuous with Lipschitz constant K > 0.
Then, q′(x) is differentiable almost everywhere in [a, b] and

|q′′(x)| ≤ K, a.e. [a, b]. (27)

Moreover, there exists a constant T > 0 such that

q(x) ≤ q(x0) + q′(x0)(x− x0) + T (x− x0)
2, (28)

where x0, x ∈ [a, b].
Lemma 2: Suppose that the learning rate ηm satisfies (A2) and that the

sequence {am} (m ∈ N) satisfies am ≥ 0,
∑∞

m=0 ηma
β
m <∞ and |am+1−am| ≤

µηm for some positive constants β and µ. Then we have

lim
m→∞

am = 0. (29)

Lemma 3: Let {bm} be a bounded sequence satisfying limm→∞(bm+1 −
bm) = 0. Write γ1 = limn→∞ infm>n bm, γ2 = limn→∞ supm>n bm and S =

14



{a ∈ R : There exists a subsequence {bik} of {bm} such that bik → a as
k → ∞}. Then we have

S = [γ1, γ2]. (30)

Lemma 4: Let Yt,Wt and Zt be three sequences such that Wt is nonneg-
ative and Yt is bounded for all t. If

Yt+1 ≤ Yt −Wt + Zt, t = 0, 1, · · · . (31)

and the series Σ∞
t=0Zt is convergent, then Yt converges to a finite value and

Σ∞
t=0Wt <∞.
Proof: This Lemma follows directly from [20].
The following lemma is crucial for the strong convergence analysis, and it

basically follows the same proof as in (21) of Theorem 3.1 in [21]. Its proof
is thus omitted.

Lemma 5: Let F : Φ ⊂ Rp → R, (p ≥ 1) be continuous for a bounded
closed region (Φ), and Φ0 = {z ∈ Φ : F (z) = 0}. If the projection of Φ0 on
each coordinate axis does’t contain any interior point. Let the sequence {zn}
satisfy:

(i) limn→∞ F (zn) = 0;

(ii) limn→∞ ∥zn+1 − zn∥ = 0.

Then, there exists an unique z∗ ∈ Φ0 such that

lim
n→∞

zn = z∗.

A. Convergence Analysis for CBP-P

For brevity, we introduce the following notations:

Rm, j = −ηm
(
∇ju

mJ+j −∇ju
mJ
)
, (32)

rm, j
i = −ηm

(
∇jv

mJ+j
i −∇jv

mJ
i

)
, (33)

dm, l = umJ+l − umJ = −ηm
l−1∑
k=0

∇ku
mJ +

l−1∑
k=0

Rm, k, (34)

hm, j
i = vmJ+j

i − vmJ
i = −ηm

j−1∑
k=0

∇kv
mJ
i +

j−1∑
k=0

rm, k
i , (35)
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ψm, l, j = GmJ+l, j −GmJ, j, (36)

ϕm, J, j = u(m+1)J ·G(m+1)J, j − umJ ·GmJ, j. (37)

where m ∈ N, j = 0, 1, · · · , J − 1, i = 1, · · · , n and l = 1, 2, · · · , J .
The boundedness of the weight sequence is an important property for

CBP-P. We firstly give the proof of the boundedness of the weight sequence.
Proof to (23): By the assumption (A2), it is easy to know that limm→∞ ηm =

0. There exists a positive constant M1 ∈ N such that

1− 2ληm > 0, (m > M1) (38)

Let A1 = max
{∥∥umJ+j

∥∥ ,m ≤M1, j = 0, · · · , J − 1
}
. Applying the assump-

tion (A1), there exists a constant A2 > 0 such that

A2 = sup

{
1

2λ

∥∥g′j (umJ+j ·GmJ+j, k
)
GmJ+j, k

∥∥} ,
where m ∈ N, j = 0, · · · , J − 1. Let A = max {A1, A2}. By the updating
formulas (8) and (10), we have∥∥umJ+j+1

∥∥ ≤ (1− 2ληm)
∥∥umJ+j

∥∥+ ηm
∥∥g′j (umJ+j ·GmJ+j, k

)
GmJ+j, k

∥∥
≤ (1− 2ληm)A+ 2ληmA = A.

(39)
Using mathematical induction, it is easy to conclude that

∥∥umJ+j
∥∥ ≤ A,

j = 0, 1, · · · , J − 1, m ∈ N. Similarly, we can get that
∥∥∥vmJ+j

i

∥∥∥ (m ∈ N, i =
1, 2, · · · , n, j = 0, 1, · · · , J − 1) is also bounded. Immediately, we obtain the
uniform boundedness of the weight sequence {wm}∥∥wmJ+j

∥∥ ≤ C, j = 0, 1, · · · , J − 1, m ∈ N, (40)

where C > 0 is a suitable constant. This proof is complete.
Lemma 6: Assume condition (A1) is valid, and let the weight sequence

wmJ+j be generated by (8)-(11). Then there are some positive constants
C1-C6 such that ∥∥GmJ+j, k

∥∥ ≤ C1, (41)∥∥dm, l
∥∥ ≤ C2ηm, (42)∥∥ψm, l, j
∥∥ ≤ C3ηm, (43)∥∥ϕm, J, j
∥∥ ≤ C4ηm, (44)∥∥Rm, j
∥∥ ≤ C5η

2
m, (45)∥∥rm, j

i

∥∥ ≤ C6η
2
m, (46)
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where m ∈ N; j, k = 0, 1 · · · , J − 1; l = 1, 2, · · · , J and i = 1, 2, · · · , n.
The following lemma demonstrates an almost monotonicity of the error

function during the updating procedure.
Lemma 7: Let the weight sequence

{
wmJ+j

}
be generated by (8)-(11).

Under condition (A1), there holds

E
(
w(m+1)J

)
≤ E

(
wmJ

)
− ηm

∥∥Ew

(
wmJ

)∥∥2 + C7η
2
m, (47)

where m ∈ N and C7 > 0 is a constant independent of m and ηm.
Proof: According to assumption (A1) and Lemma 1, we observe that

g′′
(
vmJ
i · xj + t

(
hmJ
i · xj

))
is integrable almost everywhere on t ∈ [0, 1].

Thus,

f ′
j

(
umJ ·GmJ, j

)
umJ · ψm, J, j

= f ′
j

(
umJ ·GmJ, j

) n∑
i=1

umJ
i g′(vmJ

i · xj)hmJ
i · xj

+ f ′
j

(
umJ ·GmJ, j

) n∑
i=1

umJ
i

(
hmJ
i · xj

)2 ∫ 1

0

(1− t)g′′
(
vmJ
i · xj + t

(
hmJ
i · xj

))
dt.

(48)
By virtue of (34) and (35), we have

∥∥w(m+1)J
∥∥2 = ∥∥u(m+1)J

∥∥2 + n∑
i=1

∥∥∥v(m+1)J
i

∥∥∥2 , (49)∥∥u(m+1)J
∥∥2 = ∥∥umJ

∥∥2 + 2dm,J · umJ +
∥∥dm,J

∥∥2 , (50)∥∥∥v(m+1)J
i

∥∥∥2 = ∥∥vmJ
i

∥∥2 + 2hm,J
i · vmJ

i +
∥∥∥hm,J

i

∥∥∥2 . (51)

Under assumption (A1), it is easy to see that f ′
j is Lipschitz continuous.

By (10), (11), (34), (35), (48), (49)-(51) and Lemma 1, we obtain that

fj
(
u(m+1)J ·G(m+1)J,j

)
=fj(u

mJ ·GmJ,j) + f ′
j(u

mJ ·GmJ,j)
(
dm,J ·GmJ,j + umJ · ψm,J,j + dm,J · ψm,J, j

)
+
(
ϕm,J,j

)2 ∫ 1

0

(1− t)f ′′
j

(
umJ ·GmJ,j + tϕm,J,j

)
dt.

(52)

17



Furthermore, we have(
−ηm

J−1∑
j=0

∇ju
mJ

)
· dm,J =

∥∥∥∥∥
J−1∑
j=0

∇ju
mJ

∥∥∥∥∥
2

− ηm

J−1∑
j=0

∇ju
mJ ·

J−1∑
j=0

Rm, j,

(53)

(
−ηm

J−1∑
j=0

∇ju
mJ

)
· hm,J

i =

∥∥∥∥∥ηm
J−1∑
j=0

∇jv
mJ
i

∥∥∥∥∥
2

− ηm

J−1∑
j=0

∇jv
mJ
i ·

J−1∑
j=0

rm, j
i .

(54)
On the basis of the above results, we can get that

E
(
w(m+1)J

)
=

J−1∑
j=0

fj
(
u(m+1)J ·G(m+1)J, j

)
+ λ

∥∥w(m+1)J
∥∥2

= E
(
wmJ

)
− ηm

∥∥Ew

(
wmJ

)∥∥2 + δm,

(55)

where

δm =
J−1∑
j=0

∇ju
mJ ·

J−1∑
j=0

Rm, j +
n∑

i=1

(
J−1∑
j=0

∇jv
mJ
i ·

J−1∑
j=0

rm, j
i

)

+
n∑

i=1

J−1∑
j=0

f ′
j

(
umJ ·GmJ, j

)
umJ
i

(
hmJ
i · xj

)2 ∫ 1

0

(1− t)g′′
(
vmJ
i · xj + t

(
hmJ
i · xj

))
dt

+ λdm, J · dm, J + λ
n∑

i=1

hm, J
i · hm, J

i +
J−1∑
j=0

f ′
j

(
umJ ·GmJ, j

)
dm, J · ψm, J, j

+
J−1∑
j=0

(
ϕm, J, j

)2 ∫ 1

0

(1− t)f ′′
j

(
umJ ·GmJ, j + tϕm, J, j

)
dt.

Using assumption (A1), (23) and Lemma 6, we can evaluate the first term
of δm as follows:∥∥∥∥∥

J−1∑
j=0

∇ju
mJ ·

J−1∑
j=0

Rm, j

∥∥∥∥∥ ≤
J−1∑
j=0

∥∥∇ju
mJ
∥∥ · J−1∑

j=0

∥∥Rm, j
∥∥ ≤ C7,1η

2
m. (56)

where C7,1 > 0 is a suitable constant.
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Similarly, the evaluations for the other terms of δm can be accessed with
corresponding constants C7,t > 0 for t = 2, · · · , 7. Thus, the desired evalua-
tion (47) is obtained by setting C7 =

∑7
t=1C7,t.

Proof of (24): By the assumption (A2), Lemma 4 and Lemma 7, we
conclude that

∞∑
m=0

ηm
∥∥Ew

(
wmJ

)∥∥2 = ∞∑
m=0

ηm
(
∥Eu

(
wmJ

)
∥2 + ∥EV

(
wmJ

)
∥2
)
<∞.

(57)
Naturally, it holds

∞∑
m=0

ηm
∥∥Eu

(
wmJ

)∥∥2 <∞. (58)

Combining (4), (10), there exists a suitable constant C8 > 0 such that

∣∣∥∥Eu

(
w(m+1)J

)∥∥− ∥∥Eu

(
wmJ

)∥∥∣∣ ≤ J−1∑
j=0

∥∥∇ju
(m+1)J −∇ju

mJ
∥∥ ≤ C8ηm.

(59)
A combination of (58), (59) and Lemma 2 immediately gives

lim
m→∞

∥∥Eu

(
wmJ

)∥∥ = 0. (60)

Considering the assumption (A2), it is to see that limm→∞ ηm = 0. By
(41), we conclude that

∥∥Eu

(
wmJ+j

)∥∥ ≤ 1

ηm

J−1∑
j=0

∥∥Rm, j
∥∥+ ∥∥Eu

(
wmJ

)∥∥ ≤ JC5ηm +
∥∥Eu

(
wmJ

)∥∥ .
(61)

A combination of the above two Eqs. (60) and (61) gives that

lim
m→∞

Eu

∥∥(wmJ+j
)∥∥ = 0

for j = 0, 1, · · · , J − 1. Similarly, it holds that limm→∞Evi

∥∥(wmJ+j
)∥∥ = 0

Thus, we have
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lim
m→∞

∥Ew (wm)∥ = 0. (62)

This completes the proof of weak convergence for CBP-P.

Proof of (25): By the assumptions (A1), it indicates that Ew (w) is
continuous. Combining (8), (9), (13) and (A2), we obtain that

lim
m→∞

∥∥w(m+1)J −wmJ
∥∥ = 0. (63)

According to the assumption (A3), (24), (63) and Lemma 5, there exists
an unique w∗ ∈ Ω0 such that

lim
m→∞

wmJ = w∗. (64)

By the assumption (A2), (13) and the boundedness of ∇jw
mJ+j for m ∈

N, j = 0, 1, · · · , J − 1, it holds that

lim
m→∞

∥∥wmJ+j −wmJ
∥∥ = 0. (65)

Thus, we conclude that

lim
m→∞

wmJ+j = w∗, j = 0, 1, · · · , J − 1. (66)

This immediately indicates the strong convergence of CBP-P.

B. Convergence Analysis for ACBP-P

Let the weight sequence
{
wmJ+j

}
(m ∈ N; j = 0, 1, · · · , J−1) be updated

by (17) and (18). The following notations for ACBP-P are introduced as:

Rm,j = −ηm
(
∇m(j)u

mJ+j −∇m(j)u
mJ
)
, (67)

rm,j
i = −ηm

(
∇m(j)v

mJ+j
i −∇m(j)v

mJ
i

)
, (68)

dm,l = umJ+l − umJ

= −ηm
l−1∑
k=0

∇m(k)u
mJ +

l−1∑
k=0

Rm,k,
(69)
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hm,j
i = vmJ+j

i − vmJ
i

= −ηm
j−1∑
k=0

∇m(k)v
mJ
i +

j−1∑
k=0

rm,k
i ,

(70)

ψm,l,m(j) = GmJ+l,m(j) −GmJ,m(j), (71)

ϕm,J,m(j) = u(m+1)J ·G(m+1)J,m(j) − umJ ·GmJ,m(j). (72)

where m ∈ N, j,m(j) = 0, 1, · · · , J − 1, i = 1, · · · , n and l = 1, 2, · · · , J .
We mention that the only difference between CBP-P and ACBP-P is the

order of training samples. Basically, the related Lemmas can be proved by
adjusting the corresponding indexes of the formulas. In contrast to Lemma
6 and Lemma 7, we have the following Lemmas:

Lemma 8: Assume condition (A1) is valid, and let the weight sequence
wmJ+j be generated by (17)-(20). Then there exist some positive constants
C1-C6 such that ∥∥GmJ+j,m(k)

∥∥ ≤ C1, (73)∥∥dm,l
∥∥ ≤ C2ηm, (74)∥∥ψm,l,m(j)

∥∥ ≤ C3ηm, (75)∥∥ϕm,J,m(j)
∥∥ ≤ C4ηm, (76)∥∥Rm,j

∥∥ ≤ C5η
2
m, (77)∥∥rm,j

i

∥∥ ≤ C6η
2
m, (78)

where m ∈ N; j,m(k),m(j) = 0, 1 · · · , J − 1; l = 1, 2, · · · , J and i =
1, 2, · · · , n.

Proof : According to the assumption (A1), it is obvious that the activation
function g(t) is uniformly bounded on R. Thus, we obtain the same inequality
result as (41):∥∥GmJ+j,m(k)

∥∥ =
∥∥G (VmJ+jxm(k)

)∥∥ ≤
√
n sup

t∈R
g(t) = C1. (79)

Similarly, the remaining inequalities (74)-(78) can be estimated by ad-
justing the corresponding superscripts.

Lemma 9:Let the weight sequence
{
wmJ+j

}
be generated by (17)-(20).

Under condition (A1), it holds

E
(
w(m+1)J

)
≤ E

(
wmJ

)
− ηm

∥∥Ew

(
wmJ

)∥∥2 + C7η
2
m, (80)
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where m ∈ N and C7 > 0 is the same constant as in Lemma 7.
Proof: It is easy to see that the proof can be completed by replacing

the corresponding superscripts in Lemma 7. The details are left to interest
readers and thus omitted.

Proof of (24) and (25): For ACBP-P, the weak and strong convergence
results can be similarly obtained in terms of Lemmas 1-5 and Lemmas 8-9.
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